用于解决机器人控制问题的基于学习的方法最近有了显著的发展,这是由模拟基准(如dm_control或OpenAI-Gym)的广泛可用和灵活的、可扩展的强化学习技术(如DDPG, QT-Opt, 或 Soft Actor-Critic)的改进推动的。
虽然通过模拟学习很有效,但由于物理现象建模不准确或系统延迟等因素,这些模拟环境在部署到真实机器人时经常遇到困难。这激发了在真实世界中,在真实的物理硬a件上直接开发机器人控制解决方案的需求。
当前,在物理硬件上的大多数机器人研究都是在高成本、工业级质量的机器人(PR2、Kuka-arms、ShadowHand、Baxter等)上进行的,目的是在受控环境中进行精确的、受监控的操作。此外,这些机器人是围绕传统的控制方法设计的,这些控制方法注重精度、可重复性和易于表征。
这与基于学习的方法形成了鲜明对比,基于学习的方法对于不完善的传感和和驱动具有鲁棒性,并且要求(a)高度的适应性以允许在现实世界中的反复试验学习,(b)低成本且实现维护,以通过复制实现可扩展性,以及(c)可靠的重置机制以减轻严格的人工监控要求。
来自加州大学伯克利分校(UC Berkeley)和谷歌大脑的研究人员解决了这个问题,他们提出了一个开源的低成本机器人学习平台“ROBEL”(Robotics Benchmarks for Learning with Low-Cost Robots),旨在鼓励快速实验和硬件强化学习。ROBEL还提供了主要用于促进现实世界物理硬件研究和开发的基准任务。ROBEL是一个快速的实验平台,支持广泛的实验需求和开发新的强化学习和控制方法。
ROBEL由D’Claw和D'Kitty组成,D'Claw是一个有三只手臂的机械臂型机器人,可以帮助学习灵巧的操作任务.
D'Claw
D'Kitty是一个有四条腿的机器人,可以帮助学习灵活的腿部运动任务。
D'Kitty
这个机器人平台是低成本的,模块化的,易于维护,足够强大,能够支持从零开始的硬件强化学习。
左:十二自由度D'Kitty;中:9 自由度D'Claw;右:功能齐全的 D'Claw 装置D’Lantern。
为了使机器人成本便宜和易于构建,研究人员基于现成的组件和常见的原型工具(3D打印或激光切割)设计了ROBEL。该设计很容易组装,只需要几个小时即可构建。
ROBEL基
谷歌设计了一套对 D’Claw and D’Kitty两个平台都适用的任务,可用于对现实世界的机器人学习进行基准测试。
ROBEL的任务定义包括密集和稀疏任务目标,并在任务定义中引入硬件安全指标,例如,指示关节是否超过“安全”操作界限或作用力阈值。ROBEL还为所有任务提供模拟器,以促进算法开发和快速原型设计。D’Claw 任务主要围绕三种常见的操作行为展开:摆形(Pose)、旋转(Turn)和拧(Screw)。
左: Pose-摆出符合环境的形态。中:Turn-将物体旋转到指定的角度。右:Screw-连续旋转对象,如拧螺丝。
D’Kitty的任务主要围绕三种常见的移动行为——站立、定向和行走。
左:站立-直立。中:调整方向-使方向与目标保持一致。右:走-移动到目标点。
针对这些基准任务,研究人员评估了几种深度强化学习方法(on-policy, off policy, demo-accelerated, supervised),评估结果和最终策略被作为baseline包含在软件包中以供比较。具体的任务细节和基线性能请查看论文。
可重复性和稳健性
ROBEL平台具有强大的功能,可以支持直接的硬件训练,迄今已积累了超过14000个小时的实际经验。一年来,这些平台已经非常成熟。由于设计的模块化,对系统的维护变得非常简单,几乎不需要领域内的专业知识。
为了确保平台和基准方法的可重复性,两个不同的研究实验室分别对ROBEL进行了研究。本研究仅使用软件分发和文档。不允许亲自访问。利用ROBEL的设计文档和组装说明,二者都可以复制两个硬件平台。基准任务在两个实验室分别构建的机器人上进行训练。
下图所示在两个不同地点打造的两个D'Claw机器人,它们不仅训练进度相似,而且最终收敛到了相同的性能,说明ROBEL基准具备良好的可重复性。
在不同实验室开发的两个真实D'Claw机器人执行任务的训练性能
实验结果与性能展示
到目前为止,ROBEL在各种强化学习研究中都非常有用。下面我们重点介绍一些关键结果, D’Claw平台是完全自主的,可以在很长一段时间内维持实验的可靠性,而且可以使用刚性和柔性对象的各种强化学习范例和任务改进实验。
上图:高灵活性目标:使用DAPG进行的硬件训练有效学习了如何对灵活目标进行旋转。实验中可以观察到机器人对刚性更高的阀门中心部分进行操纵。D'Claw对硬件训练的稳健性很高,这有助于在难于模拟的任务上获得成功。
中图:抗干扰:通过自然策略梯度在MuJoCo模拟中训练Sim2Real策略,其中对象扰动(以及其他)在硬件上进行了测试。我们观察到手指协同工作以抵抗外部干扰。
下图:去掉一根手指:通过自然策略梯度在MuJoCo模拟中训练的Sim2Real策略,并在硬件上测试了外部和其他干扰)。机器人用空闲的手指填补了缺失手指的位置。
重要的是,D'Claw平台是高度模块化的,而且具备高度可重复性,便于进行扩展实验。通过扩展设置,我们发现多个D'Claws可以通过共享经验更快地对任务进行集体学习。
通过共享SAC的分布式版本的硬件训练流程,可以面向多个目标任务实现任意角度的结合。在多任务定制中,完成五个任务只需要单个任务经验的2倍即可。在视频中,五只D'Claws机器人将不同的物体旋转180度(这是出于视觉呈现的考虑,实际策略可以实现任意角度的旋转)
我们还成功地在D’Kitty平台上部署了强大的移动策略。下图中为D'Kitty在“盲眼”条件下在室内和室外地形上稳定行走,在“看不见”这一干扰条件下展现了步态的稳健性。
上图:在杂乱的室内环境行走:通过MuJoCo模拟通过自然策略梯度训练的Sim2Real策略,机器人可以在随机扰动的条件下实现行走,并跨过障碍物。中图:室外环境:碎石和树枝-通过自然策略梯度在MuJoCo模拟中训练的Sim2Real策略具有随机的高度场,可以学习在分布着碎石和树枝的户外环境中行走。下图:室外–斜坡和草丛:通过自然策略梯度在MuJoCo模拟中训练的Sim2Real策略具有随机高度场,机器人可以学习在缓坡上行走。
当D’Kitty收到有关其躯干和场景中目标的信息时,就可以学会与表现出复杂行为的目标进行交互。
左:躲避移动的障碍物:通过Hierarchical Sim2Real训练的策略可以学习躲避移动障碍物,到达目标位置。中:向移动目标推动另一目标。通过Hierarchical Sim2Real训练的策略学习将目标推向移动目标(由手中的控制器标记)。右图:双机器人协同-通过Hi-Herarchical Sim2Real训练的策略可以学习协调两个D'Kitty机器人,将沉重的障碍物推向目标位置(地板上标出的两个+号)
总之,ROBEL平台成本低、性能强大、可靠性高,可以满足新兴的基于学习范式的需求,这些范式需要高度的可扩展性和弹性。我们已经将ROBEL发布到开源社区中,相信可以推动相关研究和实验的多样性的提升。
(文章来源:GoogleAI 编辑:肖琴、大明)